En este portal utilizamos datos de navegación / cookies propias y de terceros para gestionar el portal, elaborar información estadística, optimizar la funcionalidad del sitio y mostrar publicidad relacionada con sus preferencias a través del análisis de la navegación. Si continúa navegando, usted estará aceptando esta utilización. Puede conocer cómo deshabilitarlas u obtener más información
aquí
Ya tienes una cuenta vinculada a EL TIEMPO, por favor inicia sesión con ella y no te pierdas de todos los beneficios que tenemos para tí. Iniciar sesión
¡Hola! Parece que has alcanzado tu límite diario de 3 búsquedas en nuestro chat bot como registrado.
¿Quieres seguir disfrutando de este y otros beneficios exclusivos?
Adquiere el plan de suscripción que se adapte a tus preferencias y accede a ¡contenido ilimitado! No te
pierdas la oportunidad de disfrutar todas las funcionalidades que ofrecemos. 🌟
¡Hola! Haz excedido el máximo de peticiones mensuales.
Para más información continua navegando en eltiempo.com
Error 505
Estamos resolviendo el problema, inténtalo nuevamente más tarde.
Procesando tu pregunta... ¡Un momento, por favor!
¿Sabías que registrándote en nuestro portal podrás acceder al chatbot de El Tiempo y obtener información
precisa en tus búsquedas?
Con el envío de tus consultas, aceptas los Términos y Condiciones del Chat disponibles en la parte superior. Recuerda que las respuestas generadas pueden presentar inexactitudes o bloqueos, de acuerdo con las políticas de filtros de contenido o el estado del modelo. Este Chat tiene finalidades únicamente informativas.
De acuerdo con las políticas de la IA que usa EL TIEMPO, no es posible responder a las preguntas relacionadas con los siguientes temas: odio, sexual, violencia y autolesiones
Noticia
Estos son los efectos en la Tierra de un posible impacto de un asteroide tipo Bennu
Un nuevo estudio de modelado climático describe el escenario de cómo cambiaría el clima y la vida.
La misión Osiris Rex fue el que trajo a la Tierra muestras del asteroude Bennu. Foto: X: iluminatii / David Astrónomo
Un nuevo estudio de modelado climático describe el escenario de cómo cambiaría el clima y la vida en nuestro planeta en respuesta a un posible impacto futuro de un asteroide mediano (unos 500 metros).
El sistema solar está lleno de objetos con órbitas cercanas a la Tierra. La mayoría de ellos no representan ninguna amenaza para la Tierra, pero algunos de ellos han sido identificados como objetos de interés con probabilidades de colisión no despreciables.
Entre ellos se encuentra el asteroide Bennu con un diámetro de unos 500 m, que, según estudios recientes, tiene una probabilidad estimada de 1 entre 2.700 de colisionar con la Tierra en septiembre de 2182. Esto es similar a la probabilidad de lanzar una moneda al aire 11 veces seguidas con el mismo resultado.
Este cuerpo celeste tiene 500 metros de diámetro. Foto:AFP
Para determinar los posibles impactos de un impacto de asteroide en nuestro sistema climático y en las plantas terrestres y el plancton en el océano, los investigadores del Centro IBS de Física del Clima (IC) de la Universidad Nacional de Pusan (Corea del Sur) se propusieron simular un escenario idealizado de colisión con un asteroide de tamaño mediano utilizando un modelo climático de última generación.
El efecto de la colisión está representado por una inyección masiva de varios cientos de millones de toneladas de polvo en la atmósfera superior. A diferencia de estudios anteriores, la nueva investigación, publicada en Science Advances, también simula ecosistemas terrestres y marinos, así como las complejas reacciones químicas en la atmósfera.
Utilizando la supercomputadora IBS Aleph, los investigadores ejecutaron varios escenarios de impacto de polvo para una colisión de asteroides tipo Bennu con la Tierra. En respuesta a inyecciones de polvo de 100 a 400 millones de toneladas, las simulaciones del modelo de supercomputadora muestran alteraciones dramáticas en el clima, la química atmosférica y la fotosíntesis global en los 3 a 4 años posteriores al impacto.
En el escenario más intenso, el oscurecimiento solar debido al polvo provocaría un enfriamiento de la superficie global de hasta 4 °C, una reducción de la precipitación media global del 15% y una grave disminución del ozono de alrededor del 32%. Sin embargo, a nivel regional, estos impactos podrían ser mucho más pronunciados.
"El abrupto 'invierno de impacto' proporcionaría condiciones climáticas desfavorables para el crecimiento de las plantas, lo que llevaría a una reducción inicial del 20 al 30% de la fotosíntesis en los ecosistemas terrestres y marinos. Esto probablemente causaría enormes perturbaciones en la seguridad alimentaria mundial", dice en un comunicado el Dr. Lan Dai, investigador postdoctoral en el IC y autor principal del estudio.
Cuando los investigadores analizaron los datos del modelo oceánico de sus simulaciones, se sorprendieron al descubrir que el crecimiento del plancton mostraba un comportamiento completamente diferente. En lugar de la rápida reducción y la lenta recuperación de dos años en la tierra, el plancton en el océano ya se habría recuperado en seis meses, e incluso habría aumentado después a niveles que ni siquiera se observan en condiciones climáticas normales.
"Hemos podido rastrear esta respuesta inesperada a la concentración de hierro en el polvo", afirma el profesor Axel Timmermann, director del IC y coautor del estudio. El hierro es un nutriente clave para las algas, pero en algunas zonas, como el océano Austral y el Pacífico tropical oriental, su abundancia natural es muy baja. Dependiendo del contenido de hierro del asteroide y del material terrestre que se lanza a la estratosfera, las regiones que de otro modo estarían desprovistas de nutrientes pueden enriquecerse con hierro biodisponible, lo que a su vez desencadena floraciones de algas sin precedentes.
Según las simulaciones por ordenador, el aumento de la productividad marina tras la colisión sería más pronunciado en el caso de las algas ricas en silicatos, conocidas como diatomeas. Sus floraciones también atraerían grandes cantidades de zooplancton, pequeños depredadores que se alimentan de las diatomeas.
"Las floraciones excesivas simuladas de fitoplancton y zooplancton podrían ser una bendición para la biosfera y ayudar a aliviar la inseguridad alimentaria emergente relacionada con la reducción más duradera de la productividad terrestre", añade el Dr. Lan Dai.
"En promedio, los asteroides de tamaño mediano chocan con la Tierra aproximadamente cada 100-200 mil años. Esto significa que nuestros primeros antepasados humanos pueden haber experimentado algunos de estos eventos que desplazaron el planeta antes, con posibles impactos en la evolución humana e incluso en nuestra propia composición genética", dice el profesor Timmermann.
El nuevo estudio publicado en Science Advances proporciona nuevos conocimientos sobre las respuestas climáticas y de la biosfera a las colisiones con objetos en órbita cercana a la Tierra. En el siguiente paso, los investigadores del IC de Corea del Sur planean estudiar las respuestas humanas tempranas a tales eventos con más detalle mediante el uso de modelos informáticos basados en agentes, que simulan humanos individuales, sus ciclos de vida y su búsqueda de alimento.